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Abstract

In this paper, we give a new lower bound for the eigenvalues of the Dirac operator on a compact spin manifold. This estimate is
motivated by the fact that in its limiting case a skew-symmetric tensor (see Eq. (1.6)) appears that can be identified geometrically
with the O’Neill tensor of a Riemannian flow, carrying a transversal parallel spinor. The Heisenberg group which is a fibration over
the torus is an example of this case. Sasakian manifolds are also considered to be particular examples of Riemannian flows. Finally,
we characterize the 3-dimensional case by a solution of the Dirac equation.
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1. Introduction

The study of the spectrum of the Dirac operator defined on a spin manifold M , has been intensively investigated
since it contains subtle information on the geometry of the manifold. In [10], Friedrich proved that on a compact spin
manifold M of dimension n, the first eigenvalue λ of DM satisfies

λ2
≥

n
4(n − 1)

inf
M

ScalM , (1.1)

where ScalM is the scalar curvature of M , supposed to be positive. The proof is based on the modification of the Levi-
Civita connection of the spinor bundle in the direction of the identity and the use of the Schrödinger–Lichnerowicz
formula [21]. The limiting case of (1.1) is characterized by the existence of a special section of the spinor bundle
called Killing spinor satisfying an overdetermined differential equation. The manifold is in that case Einstein.

Observe that Friedrich’s estimate contains no information for manifolds with negative or vanishing scalar curvature.
Hence the estimate is established in [15] for all manifolds (the scalar curvature could be negative) where the author
modified the Levi-Civita connection in the direction of a symmetric tensor leading to a lower bound of the spinorial
Laplacian by the norm squared of this tensor.

In fact, we suppose that on a spin manifold M , there exists a spinor field Ψ such that it satisfies for all X ∈ Γ (T M),

∇
M
X Ψ = −E(X) · Ψ , (1.2)
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where E is a symmetric 2-tensor defined on T M . Then with the properties of Clifford multiplication, we see that E
is equal to the tensor T Ψ , called the energy–momentum tensor, defined on the complement set of zeroes of Ψ for all
X, Y ∈ Γ (T M) by

T Ψ (X, Y ) =
1
2
R

(
X · ∇

M
Y Ψ + Y · ∇

M
X Ψ ,

Ψ
|Ψ |2

)
. (1.3)

Hence he proved that for any eigenspinor Ψ of DM associated with the first eigenvalue λ, we have

λ2
≥ inf

M

(
ScalM

4
+ |T Ψ

|
2
)
. (1.4)

The important point is that the set of zeroes of Ψ has a Hausdorff dimension equal to n − 2 (see [1]) and hence
its measure is zero. The estimate (1.4) improves Friedrich’s inequality since by the Cauchy–Schwarz inequality,
|T Ψ

|
2 > (tr(T Ψ ))2

n (here tr denotes the trace). The existence of a spinor field satisfying, for all X ∈ Γ (T M) the
equation ∇

M
X Ψ = −T Ψ (X) · Ψ , characterizes its limiting case. In this case, it is not easy to describe geometrically

such manifolds since the lower bound of (1.4) depends on the eigenspinor in question.
The study of Eq. (1.2) in extrinsic spin geometry is the key point for a natural interpretation of this tensor. If the

dimension of M is equal to 2, Friedrich [11] proved that the existence of a spinor field Ψ , with constant norm satisfying
DMΨ = f Ψ , where f is a real function on M , is equivalent to the existence of a pair (Ψ , E) satisfying (1.2), where
E is a symmetric tensor of trace f . This also implies that E is a Gauss–Codazzi tensor and the manifold M is locally
immersed into the Euclidean space R3 with a mean curvature equal to f . Here we have the following fact [22]: If Mn

is a hypersurface of a manifold N , carrying a parallel spinor, then the energy–momentum tensor appears naturally as
the second fundamental form h of the hypersurface. Moreover, if the mean curvature H is a positive constant, then we
are in the limiting case of the extrinsic estimate established in [16] and we have

n2 H2

4
=

ScalM

4
+ |T Ψ

|
2

=
ScalM

4
+

|h|
2

4
.

In this paper, we study Eq. (1.2) in a general case. We assume that on a Riemannian spin manifold (M, gM ), there
exists a spinor field Ψ satisfying, for all X ∈ Γ (T M), the equation

∇
M
X Ψ = −E(X) · Ψ , (1.5)

where E is any endomorphism of T M . By using the properties of Clifford multiplication, we find that the symmetric
part of E is T Ψ and the skew-symmetric part of E is the tensor defined, on the complement set of zeroes of Ψ , by

QΨ (X, Y ) =
1
2
R

(
Y · ∇

M
X Ψ − X · ∇

M
Y Ψ ,

Ψ
|Ψ |2

)
, (1.6)

for all X, Y ∈ Γ (T M) (see Section 2). The problem here is to relate these two tensors to the spectrum of the Dirac
operator. We prove that if we modify the Levi-Civita connection in the direction of these two tensors, the spinorial
Laplacian is bounded from below by the sum of the norm squared of these two tensors. Thus we have:

Theorem 1.1. Let (M, gM ) be a compact spin manifold, then the first eigenvalue of the Dirac operator satisfies

λ2
≥ inf

M

(
ScalM

4
+ |T Ψ

|
2
+ |QΨ

|
2
)
, (1.7)

where Ψ is an eigenspinor of D2
M associated with λ2. The equality case of (1.7) is characterized by a solution of

(1.5).

The Heisenberg group Nil3 and the solvable group Sol3 are examples of limiting manifolds with negative scalar
curvature (the term QΨ is equal to zero, see Examples 1 and 2), so also is the Riemannian product S1

× S2 with
positive scalar curvature (the term T Ψ is equal to zero, see Example 3).

The study of foliations and in particular the transverse geometry of Riemannian flows [8], which are locally given
by Riemannian submersions with 1-dimensional fibres, will allow for a better understanding of the tensor QΨ . In fact,
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the geometry of the normal bundle Q of a Riemannian flow is completely determined by a natural skew-symmetric
tensor, called the O’Neill tensor [25] (see Eq. (4.6)), since it is related to the Lie bracket of two sections of Q.

After the identification of the spinor bundles of M and Q, we prove that if the normal bundle carries a parallel spinor
Ψ , the tensor QΨ plays the role of the O’Neill tensor (see Proposition 4.2). Particular examples of Riemannian flows
are provided by Sasakian manifolds [5]. We give necessary conditions on such manifolds for admitting transversal
parallel spinors (see Proposition 5.3) and we prove that it defines a complex Kählerian Killing spinor [20] on the cone
constructed over the manifold.

In the last section, we examine closely the case of 3-dimensional manifolds. We prove that parallel spinors on the
normal bundle correspond to solutions of the Dirac equation on M , with constant norm. Hence we obtain the analogue
characterization of surfaces established by Th. Friedrich.

2. The estimate

In this section, we prove Theorem 1.1. For this, let (Mn, gM ) be a Riemannian spin manifold and let ∇
M be the

Levi-Civita connection associated with gM . We denote by Σ M its spinor bundle and we suppose that there exists a
spinor field Ψ which satisfies Eq. (1.5). The first consequence of the existence of such a spinor is that its norm is
constant. Moreover, by the fact that for all Z ,W ∈ Γ (T M), we have R(Z · Ψ ,W · Ψ) = gM (Z ,W )|Ψ |

2. Then for
all X, Y ∈ Γ (T M), we obtain

R

(
X · ∇

M
Y Ψ + Y · ∇

M
X Ψ ,

Ψ
|Ψ |2

)
= gM (X, E(Y ))+ gM (Y, E(X)).

Hence we find that the symmetric part of E is equal to T Ψ defined by (1.3). On the other hand, we have similarly for
all X, Y ∈ Γ (T M), that

R

(
Y · ∇

M
X Ψ − X · ∇

M
Y Ψ ,

Ψ
|Ψ |2

)
= gM (Y, E(X))− gM (X, E(Y )).

We deduce that the skew-symmetric part of E , is equal to the tensor QΨ defined by (1.6). Here the following question
arises: Should an inequality be found whose limiting case could be characterized by (1.5)? For this, we will modify
the Levi-Civita connection on M in the direction of the two tensors and we will show that the spinorial Laplacian is
bounded from below by the norm of these two tensors. Indeed,

Proof of Theorem 1.1. For any spinor field Ψ ∈ Γ (Σ M) and X ∈ Γ (T M), we consider on Γ (Σ M) the modified
connection ∇̃XΨ = ∇

M
X Ψ + EΨ (X) · Ψ , where the tensor EΨ is defined for all X, Y ∈ Γ (T M), by

EΨ (X, Y ) = T Ψ (X, Y )+ QΨ (X, Y ) = R

(
Y · ∇

M
X Ψ ,

Ψ
|Ψ |2

)
.

Then for any local frame {ei }i=1,...,n of Γ (T M), we compute

|∇̃Ψ |
2

= |∇
MΨ |

2
+ |EΨ

|
2
|Ψ |

2
− 2

n∑
i=1

R(EΨ (ei ) · ∇
M
ei

Ψ ,Ψ)

= |∇
MΨ |

2
+ |EΨ

|
2
|Ψ |

2
− 2

n∑
i, j=1

gM (EΨ (ei ), e j )R(e j · ∇
M
ei

Ψ ,Ψ)

= |∇
MΨ |

2
− |EΨ

|
2
|Ψ |

2.

We then conclude the estimate with the help of the Schrödinger–Lichnerowicz formula and the fact that |EΨ
|
2

=

|T Ψ
|
2
+ |QΨ

|
2, since the tensor T Ψ is symmetric and QΨ is skew-symmetric. �

As we said before, the estimate (1.7) improves Friedrich’s inequality for an eigenspinor Ψ of DM , since we have
by the Cauchy–Schwarz inequality

|T Ψ
|
2

≥
(tr(T Ψ ))2

n
=

(
R

(
DMΨ , Ψ

|Ψ |2

))2

n
.
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Now, we will prove an analogue of this inequality for the tensor QΨ . For this, we suppose that M carries a Kähler
structure and let J be its complex structure. It is well-known that on such manifolds there exists a natural operator
defined, for all Ψ ∈ Γ (Σ M) by, D̃MΨ =

∑n
i=1 J (ei ) · ∇

M
ei

Ψ [18,19]. This operator is a self-adjoint operator with
respect to the L2-product and has a discrete spectrum, if M is compact. Moreover, we can easily prove that D̃2

M = D2
M

and it anticommutes with DM . Now, we write for all Ψ ∈ Γ (Σ M),

D̃MΨ =

n∑
i=1

J (ei ) · ∇
M
ei

Ψ =

n∑
i, j=1

gM (J (ei ), e j )e j · ∇
M
ei

Ψ

=

∑
i< j

gM (J (ei ), e j )e j · ∇
M
ei

Ψ +

∑
i< j

gM (J (e j ), ei )ei · ∇
M
e j

Ψ

=

∑
i< j

gM (J (ei ), e j )(e j · ∇
M
ei

Ψ − ei · ∇
M
e j

Ψ).

By taking the real part of the hermitian product with Ψ , we find

R(D̃MΨ ,Ψ) = 2
∑
i< j

gM (J (ei ), e j )QΨ (ei , e j )|Ψ |
2

= (J, QΨ )|Ψ |
2. (2.1)

Hence by using the Cauchy–Schwarz inequality, we deduce that

|QΨ
|
2

≥
|(J, QΨ )|2

n
=

(
R

(
D̃MΨ , Ψ

|Ψ |2

))2

n
.

Then for an eigenspinor Ψ of D̃M , which corresponds with an eigenspinor of D2
M and not of DM , the term |QΨ

|
2 is

bounded from below by λ2

n and the Inequality (1.7) improves Friedrich’s estimate. �

Remark. It is well-known that on Kähler manifolds, a sharp estimate is established by Kirchberg in [18,19] depending
on the complex dimension. In fact, we establish in [14] a new estimate on such manifolds involving the two tensors
T Ψ and QΨ which improves Kirchberg’s inequalities.

3. Case of hypersurfaces

In the following two sections, we will give a geometric interpretation for the tensors T Ψ and QΨ . We will see that
T Ψ plays the role of the second fundamental form on a manifold foliated by hypersurfaces while the tensor QΨ plays
the role of the O’Neill tensor in the case of Riemannian flows.

Let (M, gM ,F) be a Riemannian spin manifold of dimension n + 1 and let F be a foliation of dimension n,
i.e. the vector bundle L on M of tangent vectors to the leaves is of rank n. For all X ∈ Γ (T M) and Y ∈ Γ (L),
we set ∇

L
X Y = π⊥(∇M

X Y ) where ∇
M is the Levi-Civita connection on M and π⊥

: T M −→ L is the projection.
The connection ∇

L is a metric connection on L with respect to the induced metric on M . We assume that the normal
bundle is trivial, that means it is generated by a unit vector field ν. Since T M = L ⊕ Rν, the bundle L is spin as a
vector bundle (see [2,22] for details) and carries a spinor bundle denoted by Σ L . The two spinor bundles Σ M and Σ L
are identified by a unitary isomorphism for n even whereas the bundle Σ M is identified with two copies of Σ L for n
odd. If we denote by Ψ∗ the spinor field of Σ L associated with Ψ by the isomorphism, the Clifford multiplication on
L is identified with the one on M for all Y ∈ Γ (L) by

Y ·L Ψ∗
= (ν · Y · Ψ)∗. (3.1)

A spinorial Gauss formula. The connection defined in the previous paragraph allows us to establish the spinorial
Gauss formula. For this, we set for all X ∈ Γ (T M), h(X) = −∇

M
X ν. The restriction of h to L is the Weingarten map

which is symmetric and we have

∇
M
X Y = ∇

L
X Y + gM (h(X), Y )ν, (3.2)



2238 G. Habib / Journal of Geometry and Physics 57 (2007) 2234–2248

where Y ∈ Γ (L). Then for all X ∈ Γ (T M) and Ψ ∈ Γ (Σ M), we have the Gauss formula [2,29]

∇
M
X Ψ = ∇

L
XΨ +

1
2

h(X) · ν · Ψ .

We recall that the energy–momentum tensor is given for all X, Y ∈ Γ (T M), by

T Φ(X, Y ) =
1
2
R

(
π⊥(X) ·L ∇

L
Y Φ + π⊥(Y ) ·L ∇

L
XΦ,

Φ
|Φ|2

)
,

where Φ is a spinor field in Γ (Σ L). Now we have the following proposition (see also [22]):

Proposition 3.1. Let (M, gM ,F) be a Riemannian spin manifold and F a foliation of codimension 1. If M carries a
parallel spinor Ψ , then for all X, Y ∈ Γ (L), we have

T Φ(X, Y ) = −
1
2

gM (h(X), Y ) =
1
4
(LνgM )(X, Y ),

where Φ = Ψ∗ and Lν is the Lie derivative in the direction of ν. Moreover the foliation F is Riemannian
(i.e. h(ν) = 0) if and only if T Φ(ν, X) = 0 for all X ∈ Γ (L).

Proof. From the Gauss formula and the identification in (3.1), we have for all X ∈ Γ (T M) that

∇
L
XΦ =

1
2

h(X) ·L Φ.

On one hand, for X, Y ∈ Γ (L), we have

T Φ(X, Y ) =
1
2
R

(
X ·L ∇

L
Y Φ + Y ·L ∇

L
XΦ,

Φ
|Φ|2

)
=

1
4
R

(
X ·L h(Y ) ·L Φ + Y ·L h(X) ·L Φ,

Φ
|Φ|2

)
= −

1
4
(gM (X, h(Y ))+ gM (Y, h(X))) = −

1
2

gM (h(X), Y ).

On the other hand, we know that

(LνgM )(X, Y ) = gM (∇
M
X ν, Y )+ gM (∇

M
Y ν, X) = −2gM (h(X), Y ),

hence the first part of the proposition. For the second part, we compute for all X ∈ Γ (L)

T Φ(X, ν) =
1
2
R

(
X ·L ∇

L
ν Φ,

Φ
|Φ|2

)
=

1
4
R

(
X ·L h(ν) ·L Φ,

Φ
|Φ|2

)
= −

1
4

gM (X, h(ν)).

The foliation is then Riemannian [28] if and only if T Ψ (X, ν) = 0, and the result is proved. �

4. Case of Riemannian flows

Now, we consider the case of flows, i.e. the leaves are the integral curves of a vector field defined on the manifold.
In this case, the bundle L of tangent vectors is trivial, hence the normal bundle Q will play the role of L . Then
submersions will be studied instead of immersions and more precisely the study of Riemannian submersions in the
case of Riemannian flows.

For this, let (Mn+1, gM ,F) be a Riemannian manifold with its Levi-Civita connection ∇
M and let ξ be the unit

vector field that defines the flow F . We denote by Q the normal bundle with its induced metric of M and we consider
for X, Y sections of Γ (T M) and for Z ,W sections of Γ (Q) in the rest of the paper. We define a metric connection on
Q by ∇

Q
X Z = π(∇M

X Z) where X ∈ Γ (T M), Z ∈ Γ (Q) and π : T M −→ Q is the projection. The connection ∇
Q is

related to the connection ∇
M , for all X ∈ Γ (T M) and Z ∈ Γ (Q), by

∇
M
X Z = ∇

Q
X Z − gM (h(X), Z)ξ,

with h(X) = ∇
M
X ξ . From now on, we assume that M is a spin manifold. The normal bundle is then spin and carries a

spin structure induced from the one of M , as in the case of the hypersurfaces. The relation between the connections
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∇
M and ∇

Q could be easily extended on to the corresponding spinor bundles and we have

∇
M
X Ψ = ∇

Q
X Ψ +

1
2
ξ · h(X) · Ψ , (4.1)

for all Ψ ∈ Γ (Σ M) and X ∈ Γ (T M). For any spinor field Ψ ∈ Γ (Σ M) and X, Y ∈ Γ (T M), we denote by TΨ

(resp. QΨ ) the symmetric (resp. skew-symmetric) part of the tensor

EΨ (X, Y ) = R

(
ξ · Y · ∇

M
X Ψ ,

Ψ
|Ψ |2

)
.

Remark. We should point out that the spectrum of the Dirac operator could be related to the norm of EΨ , as in
Section 2. In fact, we can easily prove that

λ2
≥ inf

M

(
ScalM

4
+ |EΨ |

2
)

≥ inf
M

(
ScalM

4
+ |EΨ |

2
Q

)
, (4.2)

where |EΨ |
2
Q is the norm of EΨ evaluated on vectors orthogonal to ξ . We have the following theorem:

Theorem 4.1. Let (M, gM ,F) be a Riemannian spin manifold of dimension n + 1 and let F be a flow of M. If the
normal bundle admits a parallel spinor Φ = Ψ∗, then for all Z ,W ∈ Γ (Q), we have

TΨ (Z ,W ) = −
1
4
(Lξ gM )(Z ,W ) and QΨ (Z ,W ) =

1
4

gM ([Z ,W ], ξ),

where Lξ denotes the Lie derivative in the direction of ξ . Moreover the foliation is minimal (i.e. ∇
M
ξ ξ = 0) if and

only if TΨ (ξ, Z) = 0.

Proof. If the manifold M admits a transversal parallel spinor Φ, then by (4.1) we obtain for all X ∈ Γ (T M), that
∇

M
X Ψ =

1
2ξ · h(X) · Ψ . Hence, for all Z ,W ∈ Γ (Q), we deduce

TΨ (Z ,W ) =
1
2
R

(
ξ · Z · ∇

M
W Ψ + ξ · W · ∇

M
Z Ψ ,

Ψ
|Ψ |2

)
=

1
4
R

(
ξ · Z · ξ · h(W ) · Ψ + ξ · W · ξ · h(Z) · Ψ ,

Ψ
|Ψ |2

)
=

1
4
(−gM (Z , h(W ))− gM (W, h(Z))) = −

1
4
(Lξ gM )(Z ,W ).

Now we compute

TΨ (ξ, Z) =
1
2
R

(
ξ · ξ · ∇

M
Z Ψ + ξ · Z · ∇

M
ξ Ψ ,

Ψ
|Ψ |2

)
= −

1
4

gM (Z , h(ξ)) = −
1
4

gM (κ, Z)

where κ = ∇
M
ξ ξ is the mean curvature of F . Hence the foliation is minimal if and only if TΨ (ξ, Z) = 0. Similarly,

we have

QΨ (Z ,W ) =
1
2
R

(
ξ · W · ∇

M
Z Ψ − ξ · Z · ∇

M
W Ψ ,

Ψ
|Ψ |2

)
=

1
4
R

(
ξ · W · ξ · h(Z) · Ψ − ξ · Z · ξ · h(W ) · Ψ ,

Ψ
|Ψ |2

)
=

1
4
(−gM (W, h(Z))+ gM (Z , h(W ))) =

1
4

gM ([Z ,W ], ξ).

The last equality is a consequence of the fact that the torsion on M is zero. �

Now we consider a particular case of flows. A flow is called Riemannian [8] if for all Z ,W ∈ Γ (Q), we have

(Lξ gM )(Z ,W ) = 0. (4.3)
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The metric gM is said to be bundle-like in the sense of [27]. This definition is equivalent to the fact that the restriction
h|Q is skew-symmetric. Moreover, there exists on Q a unique metric connection with vanishing torsion [28], called
transversal Levi-Civita connection, which it is defined for all X ∈ Γ (T M) and Z ∈ Γ (Q), by

∇X Z =

{
π [ξ, Z ], X = ξ,

π(∇M
X Z), X ⊥ ξ .

An important property for the curvature R∇ of the normal bundle is that for all Y, Z ∈ Γ (Q), we have R∇(ξ, Y )Z = 0
[28]. Hence the operator R∇(Y, Z) : Γ (Q) −→ Γ (Q) is a well-defined endomorphism. The transversal Ricci operator
is defined for all Y ∈ Γ (Q) by Ric∇Y =

∑n
i=1 R∇(Y, ei )ei , where {ei }i=1,...,n is a local frame of Γ (Q). The

transversal scalar curvature Scal∇ is the trace of the transversal Ricci curvature. Moreover, the connection ∇ is related
to ∇

M through the Gauss-type formula for all Z ,W ∈ Γ (Q), by ∇
M
Z W = ∇Z W − gM (h(Z),W )ξ and

∇
M
ξ Z = ∇

M
Z ξ + [ξ, Z ]

= h(Z)+ π([ξ, Z ])+ gM ([ξ, Z ], ξ)ξ

= h(Z)+ ∇ξ Z + gM (∇
M
ξ Z − ∇

M
Z ξ, ξ)ξ

= ∇ξ Z + h(Z)− κ(Z)ξ. (4.4)

Also for the scalar curvatures of Q and M , we have [25]

Scal∇ = ScalM − 2divQκ + 2|κ|2 + |h|
2
Q . (4.5)

The geometry of the normal bundle is determined by a skew-symmetric tensor, called the O’Neill tensor [25], defined
for all X, Y ∈ Γ (T M) by

AX Y = π⊥(∇M
π(X)π(Y ))+ π(∇M

π(X)π
⊥(Y )). (4.6)

Then if Z ∈ Γ (Q) and Y = ξ , we have AZ ξ = π(∇M
Z ξ) = h(Z). Also if Z ,W ∈ Γ (Q), then

AZ W = π⊥(∇M
Z W ) = gM (∇

M
Z W, ξ)ξ = −gM (h(Z),W )ξ. (4.7)

Since the map h|Q is skew-symmetric, the tensor A has also to be skew-symmetric. Then

AZ W = π⊥(∇M
Z W ) = π⊥(∇M

W Z + [Z ,W ]) = AW Z + π⊥
[Z ,W ],

and we deduce that AZ W =
1
2π

⊥
[Z ,W ]. The bundle Q is then involutive if and only if the tensor A vanishes. In

this case, if the flow is minimal, then by the de Rham decomposition the manifold is locally isometric to a product of
manifolds. This product is global if the manifold is complete and simply connected. From now on, we suppose that
the manifold M is spin. For all Ψ ∈ Γ (Σ M), we have the analogue of the Gauss formula for Riemannian flows,

∇
M
ξ Ψ = ∇ξΨ +

1
4

n∑
i=1

ei · h(ei ) · Ψ +
1
2
ξ · κ · Ψ ,

∇
M
Z Ψ = ∇ZΨ +

1
2
ξ · h(Z) · Ψ ,

(4.8)

where Z ∈ Γ (Q) and {ei }i=1,...,n is a local frame of Γ (Q). The proof of the second equality in (4.8) is similar to the
previous section. For the first one, using Equality (4.4), we write in the frame {ξ, e1, . . . , en},

∇
M
ξ Ψ = ξ(Ψ)+

1
2

n∑
j=1

gM (∇
M
ξ ξ, e j )ξ · e j · Ψ +

1
2

∑
i< j

gM (∇
M
ξ ei , e j )ei · e j · Ψ

= ξ(Ψ)+
1
2
ξ · ∇

M
ξ ξ · Ψ +

1
2

∑
i< j

gM (∇ξ ei + h(ei ), e j )ei · e j · Ψ

= ∇ξΨ +
1
2
ξ · κ · Ψ +

1
4

n∑
i=1

ei · h(ei ) · Ψ . �
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Now we are ready to state the following proposition:

Proposition 4.2. Let (M, gM ,F) be a Riemannian spin manifold and let F be a Riemannian flow. If the normal
bundle carries a parallel spinor Φ = Ψ∗, then for all Z ,W ∈ Γ (Q), we have

QΨ (Z ,W ) =
1
2

gM (AZ W, ξ) = −
1
2

gM (AZ ξ,W ),

where A denotes the O’Neill tensor.

Proof. From Theorem 4.1, we have for all Z ,W ∈ Γ (Q),

QΨ (Z ,W ) =
1
4

gM ([Z ,W ], ξ) =
1
2

gM (AZ W, ξ). �

5. Case of Sasakian manifolds

It is interesting to consider an example of a Riemannian flow. We will discuss the case where the normal bundle
admits a parallel spinor. For this, we recall the definition of a Sasakian manifold [5].

Definition 5.1. A Riemannian manifold (M, gM ) of dimension 2m +1 is called Sasakian, if there exists a unit Killing
vector field ξ such that the tensor h defined for all X ∈ Γ (T M), by h(X) = ∇

M
X ξ satisfies the following properties:

(1) h2
= −IdT M + ξ [ ⊗ ξ,

(2) (∇M
X h)(Y ) = gM (ξ, Y )X − gM (X, Y )ξ,

where X, Y are vector fields in Γ (T M).

Since ξ is a Killing vector field, it then satisfies Eq. (4.3). Hence it defines a Riemannian flow with totally geodesic
fibres. Moreover, the normal bundle has a Kähler structure w.r.t. the connection ∇ defined for all Z ∈ Γ (Q) by
J (Z) = h(Z) [5]. The transversal Ricci tensor is related to the Ricci tensor of M by [5, Eq. 2.5]

Ric∇ Z = RicM Z + 2Z and RicMξ = 2mξ. (5.1)

An important case of Sasakian manifolds is η-Einstein manifolds (see [6,7]):

Definition 5.2. A Sasakian manifold (M, gM ) of dimension 2m + 1 is called η-Einstein if there exist real functions β
and γ on M such that

RicM = βgM + γ ξ [ ⊗ ξ [.

In this case, the functions β and γ are constant and satisfy β + γ = 2m. The scalar curvature is constant equal to
2m(β + 1).

Let now (M, gM ) be a spin Sasakian manifold. The Kähler form Ω of the bundle Q defined for all Z ,W ∈ Γ (Q)
by Ω(Y, Z) := gM (J (Y ), Z) acts on the spinor bundle of Q by [4]

Ω =
1
2

2m∑
i=1

ei ·Q J (ei ) ·Q,

where {ei }i=1,...,2m is a local frame of Γ (Q). It is well-known that under the action of Ω , the spinor bundle of Q splits
into an orthogonal sum [4,18]

Σ Q =

m⊕
r=0

Σr Q,

where Σr Q is the eigenbundle of rank
(

m
r

)
associated with the eigenvalue iµr := i(2r − m) of Ω . Since the bundle

Σ M is identified with the bundle Σ Q by Section 3, we have the same decomposition for Σ M . Moreover, the Killing
vector field ξ acts on each eigenbundle Σr M by [17]

ξ · Ψr = (−1)r+1iΨr , (5.2)

for all Ψr ∈ Γ (Σr M). Now we have the following proposition:
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Proposition 5.3. Let (M, gM ) be a simply connected Sasakian spin manifold of dimension 2m + 1 and let (ξ, h, η)
be its Sasakian structure. If the normal bundle Q admits a parallel spinor Φ = Ψ∗, then M is η-Einstein. If moreover
the limiting case of Inequality (4.2) is realized, then either Q carries a hyperkähler structure of rank n = 2m = 8k
or the manifold M is isometric to R4l+1.

Proof. The normal bundle is Kähler and Ricci flat with holonomy group is one of the following SUm,Spl (m = 2l),
0 [30]. We deduce by Eq. (4.5) that ScalM = −2m and by (5.1) that,

RicM Z = −2Z and RicMξ = 2mξ, (5.3)

for all Z ∈ Γ (Q). Thus the manifold M is η-Einstein and by (4.8) it carries a spinor field Ψ that satisfies
∇

M
ξ Ψ =

1
2
Ω · Ψ ,

∇
M
Z Ψ =

1
2
ξ · h(Z) · Ψ .

(5.4)

In this case, the tensor QΨ (Z ,W ) = −
1
2 gM (h(Z),W ) for all Z ,W ∈ Γ (Q) and we are in the limiting case of

Inequality (4.2) if and only if Ω · Ψ = 0. Using the identification of the bundles Σ M and Σ Q, this condition
gives that Φ ∈ Γ (Σm

2
Q) and m = 2l is even. Having a holonomy group SUm , the only subbundles that admit

parallel spinors in even complex dimension are Σ0 Q and Σm Q [23,24,30], hence a contradiction. Thus the holonomy
group is either reduced to Spl or to 0. In the first case the normal bundle admits a hyperkähler structure and the
subbundles that admit parallel spinors have the form Σs Q with s even. We deduce that l is even. In the second
case, the normal bundle is flat (i.e. R∇

= 0) and by a result of Blumenthal [3, Cor. 2], the manifold M is isometric
to R4l+1. �

We recall that a Kähler spin manifold (N 2m, J, S) with complex structure J and spinor bundle S carries a complex
Kählerian Killing spinor ψ = ψr−1 + ψr ∈ Γ (Sr−1 ⊕ Sr ) if for each vector field X the differential equations
[20, Eq. I.2]∇

N
X ψr−1 =

c
2
(X + iJ (X)) · ψr ,

∇
N
X ψr =

c
2
(X − iJ (X)) · ψr−1,

are satisfied, where c 6= 0 is a given complex number. Many basic properties have been investigated for a non-trivial
solution of the above differential system. In particular, the manifold N is Einstein of odd complex dimension [20, Thm.
3]. Now we will relate the particular spinor obtained in Proposition 5.3 to the cone constructed over the manifold M
and we will prove that it corresponds to a complex Kählerian Killing spinor.

For this, let (Mn, gM ) be a Riemannian manifold of dimension n and let ∇
M be the Levi-Civita connection

associated with gM . We recall the following facts [12,26]. The cone constructed over M is defined by the Riemannian
product (Z = R+

× M, gZ = dt2
⊕ t2gM ). The unit vector field ∂t is orthogonal to the hypersurfaces Mt =

{t} × M ⊂ Z which foliate the manifold Z . We denote for all X ∈ Γ (T M) by h(X) = −∇
Z
X ∂t the Weingarten

map of Mt , where ∇
Z is the Levi-Civita connection associated with gZ . We have the following formulas, for all

X, Y ∈ Γ (T M),[26, p. 206]

∇
Z
∂t ∂t = 0,

∇
Z
∂t X = ∇

Z
X ∂t =

1
t

X,

∇
Z
X Y = ∇

M
X Y − tgM (X, Y )∂t.

Using these formulas, we can relate the Ricci curvatures for M and Z and we have for all X ∈ Γ (T M),

RicZ∂t = 0, RicZ X =
1
t2 (RicM X − (n − 1)X),
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and for the scalar curvatures, we deduce

ScalZ =
1
t2 (ScalM − n(n − 1)).

From now on, we suppose that the manifold M2m+1 is a Sasakian spin manifold with (ξ, h, η) being its Sasakian
structure. Let the orientation of Z be such that for any positively orthonormal basis {ξ, e1, . . . , e2m} of T M , the basis
{∂t, 1

t ξ,
1
t e1, . . . , e2m} is positively orthonormal in Z . Since the dimension of M is odd, the spinor bundles of M and

Z are identified as in Section 3 and we have

Σ M ' ΣZ+
|M .

Also for the Clifford multiplications, we get from Eq. (3.1) for all X ∈ Γ (T M) and ϕ ∈ Γ (ΣZ+
|M ) that

X ·M ϕ
∗

=
1
t
(∂t · X · ϕ)∗, (5.5)

where “·” is the Clifford multiplication on Z . The spinorial Gauss formula is then given for all X ∈ Γ (T M) by

∇
Z
X ϕ = ∇

M
X ϕ +

1
2t
∂t · X · ϕ,

where ϕ ∈ Γ (ΣZ+). Moreover, we can relate the geometry of M to a particular geometry on the cone. Indeed, the
structure J given for all Y orthogonal to ξ , by

J (∂t) =
1
t
ξ, J (ξ) = −t∂t, J (Y ) = h(Y ),

defines a Kähler structure on Z . Let ΩZ = gZ (J (X), Y ) be the Kähler form on the manifold Z . Its action on the
spinor bundle is given by

ΩZ · =
1
t
∂t · ξ · +

1
2t2

2m∑
i=1

ei · J (ei ). (5.6)

This formula is a direct consequence from the local expression of ΩZ in the basis {∂t, 1
t ξ,

1
t e1, . . . ,

1
t e2m}. Now we

turn our attention to the cone over the manifolds in Proposition 5.3. Using Eqs. (5.3), we deduce for all Y ∈ Γ (Q)
that

RicZξ = RicZ∂t = 0 and RicZY = −
2(m + 1)

t2 Y.

The scalar curvature on Z is then equal to −
4m(m+1)

t2 . Since the spinor field Ψ = ϕ∗
∈ Γ (Σl Q) (l =

m
2

is supposed to be even), hence by using Eqs. (5.5) and (5.2) we obtain(
1
t
∂t · ξ · ϕ

)∗

= ξ ·M Ψ = −iΨ = (−iϕ)∗. (5.7)

Moreover, the action of the last term in (5.6) on the spinor field ϕ is zero, since Ψ is the kernel of the Kähler form of
Γ (Q). We then deduce that ΩZ · ϕ = −iϕ and ϕ ∈ Γ (ΣlZ). Therefore, using Eqs. (5.4) and the Gauss formula, we
have by Eq. (5.5) for all Y ∈ Γ (Q) that

∇
Z
∂t ϕ = 0,

∇
Z
ξ ϕ = −

i
2
ϕ,

∇
Z
Y ϕ =

1
2t2 ξ · J (Y ) · ϕ +

1
2t
∂t · Y · ϕ.

The spinor field defined by ψ := i∂t · ϕ is a section of the bundle Σl+1Z . In fact, using Eqs. (5.6) and (5.7), we
compute

ΩZ · ψ =
i
t
∂t · ξ · ∂t · ϕ =

i
t
ξ · ϕ =

i
t
(it∂t · ϕ) = −∂t · ϕ = iψ.
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Hence ψ ∈ Γ (Σl+1Z) and the pair (ϕ, ψ) ∈ Γ (ΣlZ)⊕ Γ (Σl+1Z). Using Eq. (5.7), we write for all Y ∈ Γ (Q),

∇
Z
Y ϕ = −

1
2t2 J (Y ) · ξ · ϕ −

1
2t

Y · ∂t · ϕ

= −
i

2t
J (Y ) · ∂t · ϕ −

1
2t

Y · ∂t · ϕ

= −
1
2t

J (Y ) · ψ +
i

2t
Y · ψ =

i
2t
(Y + i J (Y )) · ψ.

Similarly, we compute

∇
Z
Y ψ = i∇ZY ∂t · ϕ + i∂t · ∇

Z
Y ϕ

=
i
t
Y · ϕ + i∂t ·

(
−

i
2t

J (Y ) · ∂t · ϕ −
1
2t

Y · ∂t · ϕ

)
=

i
2t

Y · ϕ +
1
2t

J (Y ) · ϕ =
i

2t
(Y − iJ (Y )) · ϕ.

The same equations remain true along the vector field ξ with constant i
4t . �

6. Case of 3-dimensional flows

Now we will characterize parallel spinors on the normal bundle when the manifold M is of dimension 3. We will
prove that the existence of such a spinor is equivalent to the existence of a solution of the Dirac equation and we will
find the analogy of the characterization for surfaces. For this, we consider a Riemannian spin manifold (M, gM ,F)
of dimension 3 and a Riemannian flow F , supposed to be minimal, defined by a unit vector field ξ . We recall that the
complex volume form

ω3 = −ξ · e1 · e2,

acts as the identity on the spinor bundle Σ M , where {ξ, e1, e2} is a local orthonormal frame of Γ (T M). Moreover,
we have for all Z ∈ Γ (Q)

Z ·Q Ψ∗
= (ξ · Z · Ψ)∗ and (ξ · Ψ)∗ = −iΨ

∗
, (6.1)

where Ψ
∗

= ω2 ·Q Ψ∗ and ω2 is the complex volume form of Σ Q defined by ω2 = ie1 ·Q e2. Since the map
h(Z) = ∇

M
Z ξ is skew-symmetric, it can be represented by the following matrix(

0 −b
b 0

)
,

where b : M −→ R is a function. We have the following theorem:

Theorem 6.1. Let (M3, gM ,F) be a compact Riemannian manifold and let F be a minimal Riemannian flow. Then
the following properties are equivalent:
(1) The normal bundle admits a parallel spinor Φ = Ψ∗.
(2) The transversal scalar curvature is non-negative and Ψ is a solution of

DMΨ =
b
2
Ψ , (6.2)

with |Ψ | = 1.

Proof. For (1) ⇒ (2), the first part is trivial since the normal bundle is Ricci flat. For the second part, the norm of
Ψ is constant by a direct consequence from the equality X (|Ψ |

2) = 2R(∇XΨ ,Ψ) for all X ∈ Γ (T M). On the other
hand, we use Eqs. (5.4) and the fact that

Ω · Ψ =
1
2
(e1 · h(e1) · Ψ + e2 · h(e2) · Ψ)

=
1
2
(be1 · e2 · Ψ − be2 · e1 · Ψ) = bξ · Ψ .
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We compute the Dirac operator of Ψ and we find

DMΨ = −
b
2
Ψ +

1
2

e1 · ξ · h(e1) · Ψ +
1
2

e2 · ξ · h(e2) · Ψ

= −
b
2
Ψ +

b
2

e1 · ξ · e2 · Ψ −
b
2

e2 · ξ · e1 · Ψ =
b
2
Ψ .

For (2) ⇒ (1), we compute first

DMΨ = ξ · ∇
M
ξ Ψ + e1 · ∇

M
e1

Ψ + e2 · ∇
M
e2

Ψ

= ξ ·

(
∇ξΨ +

b
2
ξ · Ψ

)
+ e1 ·

(
∇e1Ψ +

b
2
ξ · e2 · Ψ

)
+ e2 ·

(
∇e2Ψ −

b
2
ξ · e1 · Ψ

)
= ξ · ∇ξΨ + e1 · ∇e1Ψ + e2 · ∇e2Ψ +

b
2
Ψ . (6.3)

Since Ψ satisfies (6.2), we get by (6.1) that DtrΦ = ∇ξΦ where Φ = Ψ∗ and Dtr is the transversal Dirac operator
defined for each spinor field Φ ∈ Γ (Σ Q) by [13, Eq. 1.6]

DtrΦ = e1 ·Q ∇e1Φ + e2 ·Q ∇e2Φ.

Thus we have

R(DtrΦ,Φ) = R(∇ξΦ,Φ) =
1
2
ξ(|Φ|

2).

The norm of Φ being constant, then R(DtrΦ,Φ) = 0. On the other hand, by the fact that for all Z ∈ Γ (Q), we have
R∇(ξ, Z)Φ = 0, then

D2
trΦ = Dtr (∇ξΦ)

= e1 ·Q ∇e1∇ξΦ + e2 ·Q ∇e2∇ξΦ
= e1 ·Q(∇ξ∇e1Φ + ∇[e1,ξ ]Φ)+ e2 ·Q(∇ξ∇e2Φ + ∇[e2,ξ ]Φ).

If we choose normal coordinates {e1, e2} at a point x on M , the bracket [ei , ξ ]x vanishes since the foliation is minimal.
Thus, D2

trΦ = ∇ξ DtrΦ and

R(D2
trΦ,Φ) = R(∇ξ DtrΦ,Φ) = −(DtrΦ,∇ξΦ) = −|DtrΦ|

2.

The integral over M , gives DtrΦ = ∇ξΦ = 0. Hence the spinor field Φ is transversally parallel as a consequence
of the Schrödinger–Lichnerowicz-type formula [13, Eq. 2.1] and the fact that the transversal scalar curvature is non-
negative. �

Now we give examples of manifolds in dimension 3 with negative scalar curvatures, in which the limiting case of
Inequality (1.7) is achieved. We also define a particular Riemannian flow on these manifolds with transversal parallel
spinors.

Example 1. Let M = Nil3 be the Heisenberg group defined by the quotient of

G :=


1 a c

0 1 b
0 0 1

 ; (a, b, c) ∈ R3

 ,
by the subgroups Gk ⊂ G of matrices for which x, y, z are integers divisible by some positive integer k. The
Heisenberg group carries a left-invariant metric which has the form [9]

ds2
= dx2

+ dy2
+ (τ (ydx − xdy)+ dz)2 ,

where τ is a non-zero constant real number. We easily verify that the frame {e1, e2, e3} defined by

e1 = ∂x − τ y∂z, e2 = ∂y + τ x∂z, e3 = ∂z,
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is an orthonormal frame and satisfies

[e1, e2] = 2τe3, [e2, e3] = 0, [e1, e3] = 0.

The Christoffel symbols Γ k
i j = g(∇ei e j , ek) are given by

Γ 3
12 = Γ 1

23 = −Γ 3
21 = τ,

Γ 1
32 = −Γ 2

31 = −Γ 2
13 = τ.

The other symbols vanish. The Ricci curvature of M is given by the matrix

RicM =

−2τ 2 0 0
0 −2τ 2 0
0 0 2τ 2

 .

The scalar curvature of M is then equal to −2τ 2. Using the local expression of the covariant derivative of a spinor
field [4], the spinor bundle Σ M admits a spinor field Ψ which verifies,

∇
M
e1

Ψ =
1
2

gM (∇
M
e1

e2, e3)e2 · e3 · Ψ =
1
2
τe1 · Ψ .

Also, we have that ∇
M
e2

Ψ =
1
2τe2 · Ψ and ∇

M
e3

Ψ = −
1
2τe3 · Ψ . Hence the spinor field Ψ is an eigenspinor of the

Dirac operator associated with the eigenvalue −
τ
2 . Moreover, we compute

T Ψ (e1, e1) = R

(
e1 · ∇

M
e1

Ψ ,
Ψ

|Ψ |2

)
=
τ

2
R

(
e1 · e1 · Ψ ,

Ψ
|Ψ |2

)
= −

τ

2
.

Similarly, we have that T Ψ (e2, e2) = −
τ
2 and T Ψ (e3, e3) =

τ
2 . The others are equal to zero and this is the same also

for QΨ . We then deduce that |T Ψ
|
2

=
3τ 2

4 and we get

inf
M

(
ScalM

4
+ |T Ψ

|
2
+ |QΨ

|
2
)

=
τ 2

4
= λ2.

The flow defined by e3 is Riemannian and minimal. In fact, the map h(Y ) = ∇
M
Y e3 is given by

h(e1) = −τe2, h(e2) = τe1, h(e3) = 0.

Using Eqs. (4.8), we can verify that Φ = Ψ∗ is a transversal parallel spinor. Indeed, we have

∇e1Φ =

(
∇

M
e1

Ψ −
1
2

e3 · h(e1) · Ψ
)∗

=

(
1
2
τe1 · Ψ +

1
2
τe3 · e2 · Ψ

)∗

= 0,

and ∇e2Φ = ∇e3Φ = 0. Hence, we find the result in Proposition 4.2 by computing

QΨ (e1, e2) =
1
2
R

(
e3 · e2 · ∇

M
e1

Ψ − e3 · e1 · ∇
M
e2

Ψ ,
Ψ

|Ψ |2

)
=
τ

4
R

(
e3 · e2 · e1 · Ψ − e3 · e1 · e2 · Ψ ,

Ψ
|Ψ |2

)
= −

τ

2
R

(
e1 · e2 · e3 · Ψ ,

Ψ
|Ψ |2

)
=
τ

2
= −

1
2

gM (h(e1), e2). �

Example 2. Let M be the solvable group Sol3. The manifold M is the semi-direct product R n R2, where t ∈ R acts
on R2 via the transformation (x, y) −→ (et x, e−t y). We identify Sol3 with R3 and the group multiplication is defined
by

(x, y, z) · (x ′, y′, z′) = (x + e−z x ′, y + ez y′, z + z′).

The frame

e1 = e−z∂x, e2 = ez∂y, e3 = ∂z,



G. Habib / Journal of Geometry and Physics 57 (2007) 2234–2248 2247

is orthonormal with respect to the left-invariant metric

ds2
= e2zdx2

+ e−2zdy2
+ dz2.

We easily verify that the frame {e1, e2, e3} satisfies

[e1, e2] = 0, [e1, e3] = e1, [e2, e3] = −e2.

The Christoffel symbols are given by

Γ 3
11 = Γ 2

23 = −Γ 1
13 = −Γ 3

22 = −1.

The other symbols vanish. The scalar curvature is equal to −2. As the previous example, there exists a spinor field Ψ
on Γ (Σ M) which satisfies

∇
M
e1

Ψ =
1
2

e2 · Ψ , ∇
M
e2

Ψ =
1
2

e1 · Ψ , ∇
M
e3

Ψ = 0.

The spinor field Ψ is then a harmonic spinor and we have

T Ψ (e1, e2) =
1
2
R

(
e1 · ∇

M
e2

Ψ + e2 · ∇
M
e1

Ψ ,
Ψ

|Ψ |2

)
=

1
4
R

(
e1 · e1 · Ψ + e2 · e2 · Ψ ,

Ψ
|Ψ |2

)
= −

1
2
.

The others are equal to zero and also for QΨ . Hence we deduce that |T Ψ
|
2

=
1
2 and we get

inf
M

(
ScalM

4
+ |T Ψ

|
2
+ |QΨ

|
2
)

= 0 = λ2.

The flow defined by e3 is minimal and is not Riemannian. In fact, the map h(Y ) = ∇
M
Y e3 satisfies

h(e1) = e1, h(e2) = −e2, h(e3) = 0.

Then, we are in the case of Theorem 4.1 and we have for all X ∈ Γ (T M)

∇
M
X Ψ = ∇XΨ +

1
2

e3 · h(X) · Ψ .

Thus, we find ∇e1Φ = ( 1
2 e2 · Ψ −

1
2 e3 · e1 · Ψ)∗ = 0. Also, we deduce that ∇e2Φ = ∇e3Φ = 0 and Φ is a parallel

spinor on the normal bundle. Now, we compute

TΨ (e1, e1) = R

(
e3 · e1 · ∇

M
e1

Ψ ,
Ψ

|Ψ |2

)
=

1
2
R

(
e3 · e1 · e2 · Ψ ,

Ψ
|Ψ |2

)
= −

1
2
.

On the other hand, we have −
1
4 (Le3 gM )(e1, e1) = −

1
2 gM (∇

M
e1

e3, e1) = −
1
2 . Moreover, we write

QΨ (e1, e2) =
1
2
R

(
e3 · e2 · ∇

M
e1

Ψ − e3 · e1 · ∇
M
e2

Ψ ,
Ψ

|Ψ |2

)
=

1
4
R

(
e3 · e2 · e2 · Ψ − e3 · e1 · e1 · Ψ ,

Ψ
|Ψ |2

)
= 0 =

1
4

gM ([e1, e2], e3). �

Example 3. Let the manifold M be the Riemannian product S1
× S2 and let ∇

M be the Levi-Civita connection
associated with the product metric. The manifold M is a trivial fibration over the sphere S2 with S1-fibres. We denote
by ξ the unit vector field of the tangent bundle of S1 and {e1, e2} is a local orthonormal frame of S2. Let Φ be a Killing
spinor on the sphere with Killing number 1

2 , i.e. ∇
S2

ei
Φ =

1
2 ei ·S2 Φ, for i = 1, 2. The scalar curvature on M is then

equal to 2. Moreover, by using the identification in (6.1), we deduce that the manifold M carries a spinor field Ψ
which satisfies

∇
M
ξ Ψ = 0, ∇

M
e1

Ψ =
1
2

e2 · Ψ , ∇
M
e2

Ψ = −
1
2

e1 · Ψ .
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The spinor field Ψ is an eigenspinor of D2
M associated with the eigenvalue 1. In fact, we have DMΨ = ξ · Ψ and

D2
MΨ = DM (ξ · Ψ) = e1 · ∇

M
e1
(ξ · Ψ)+ e2 · ∇

M
e2
(ξ · Ψ)+ ξ · ∇

M
ξ (ξ · Ψ)

= e1 · ξ · ∇
M
e1

Ψ + e2 · ξ · ∇
M
e2

Ψ = −ξ · e1 · e2 · Ψ = Ψ .

Moreover, we easily verify that the tensor T Ψ is equal to zero and

QΨ (e1, e2) =
1
2
R

(
e2 · ∇

M
e1

Ψ − e1 · ∇
M
e2

Ψ ,
Ψ

|Ψ |2

)
=

1
4
R

(
e2 · e2 · Ψ + e1 · e1 · Ψ ,

Ψ
|Ψ |2

)
= −

1
2
.

We also have QΨ (ξ, ei ) = 0 for i = 1, 2. Hence we deduce that |QΨ
|
2

=
1
2 and

inf
M

(
ScalM

4
+ |T Ψ

|
2
+ |QΨ

|
2
)

= 1 = λ2.

For the Friedrich lower bound, we have n
4(n−1) infM ScalM =

3
4 . �
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[24] A. Moroianu, Opérateur de Dirac et submersions riemanniennes, Ph.D. Thesis, École Polytechnique, 1996.
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